Custom Search

WATCH THE LATEST VIDEOS IN YOU TUBE

Friday, September 12, 2008

CONCRETE TESTING


Compression testing of a concrete cylinder



Same cylinder after failure


Engineers usually specify the required compressive strength of concrete, which is normally given as the 28 day compressive strength in megapascals (MPa) or pounds per square inch (psi). Twenty eight days is a long wait to determine if desired strengths are going to be obtained, so three-day and seven-day strengths can be useful to predict the ultimate 28-day compressive strength of the concrete. A 25% strength gain between 7 and 28 days is often observed with 100% OPC (ordinary Portland cement) mixtures, and up to 40% strength gain can be realized with the inclusion of pozzolans and supplementary cementitious materials (SCMs) such as fly ash and/or slag cement. As strength gain depends on the type of mixture, its constituents, the use of standard curing, proper testing and care of cylinders in transport, etc. it becomes imperative to proactively rely on testing the fundamental properties of concrete in its fresh, plastic state.
Concrete is typically sampled while being placed, with testing protocols requiring that test samples be cured under laboratory conditions (standard cured). Additional samples may be field cured (non-standard) for the purpose of early 'stripping' strengths, that is, form removal, evaluation of curing, etc. but the standard cured cylinders comprise acceptance criteria. Concrete tests can measure the "plastic" (unhydrated) properties of concrete prior to, and during placement. As these properties affect the hardened compressive strength and durability of concrete (resistance to freeze-thaw), the properties of workability (slump/flow), temperature, density and age are monitored to ensure the production and placement of 'quality' concrete. Tests are performed per National/Regional methods and practices. The most used methods are ASTM International, European Committee for Standardization and Canadian Standards Association. Requirements for technicians performing concrete tests are normally given in the actual methods. Structural design, material design and properties are often specified in accordance with national/regional design codes.
Compressive-strength tests are conducted using an instrumented hydraulic ram to compress a cylindrical or cubic sample to failure. Tensile strength tests are conducted either by three-point bending of a prismatic beam specimen or by compression along the sides of a cylindrical specimen.
Concrete recycling
Concrete recycling is an increasingly common method of disposing of concrete structures. Concrete debris was once routinely shipped to landfills for disposal, but recycling is increasing due to improved environmental awareness, governmental laws, and economic benefits.
Concrete, which must be free of trash, wood, paper and other such materials is collected from demolition sites and put through a crushing machine, often along with asphalt, bricks, and rocks.
Reinforced concrete contains rebar and other metallic reinforcements, which are removed with magnets and recycled elsewhere. The remaining aggregate chunks are sorted by size. Larger chunks may go through the crusher again. Smaller pieces of concrete are used as gravel for new construction projects. Aggregate base gravel is laid down as the lowest layer in a road, with fresh concrete or asphalt placed over it. Crushed recycled concrete can sometimes be used as the dry aggregate for brand new concrete if it is free of contaminants, though the use of recycled concrete limits strength and is not allowed in many jurisdictions. On March 3, 1983, a government funded research team (the VIRL research.codep) approximated that almost 17% of worldwide landfill was by-products of concrete based waste.
Recycling concrete provides environmental benefits, conserving landfill space and use as aggregate reduces the need for gravel mining.
Use of concrete in structures


The interior of the Pantheon in the 18th century, painted by Giovanni Paolo Panini



The Baths of Caracalla, in 2003

Mass concrete structures
These include gravity dams such as the Itaipu, Hoover Dam and the Three Gorges Dam and large breakwaters. Concrete that is poured all at once in one block (so that there are no weak points where the concrete is "welded" together) is used for tornado shelters.
Reinforced concrete structures
Reinforced concrete contains steel reinforcing that is designed and placed in structural members at specific positions to cater for all the stress conditions that the member is required to accommodate.
Prestressed concrete structures
Prestressed concrete is a form of reinforced concrete which builds in compressive stresses during construction to oppose those found when in use. This can greatly reduce the weight of beams or slabs, by better distributing the stresses in the structure to make optimal use of the reinforcement.
For example a horizontal beam will tend to sag down. If the reinforcement along the bottom of the beam is prestressed, it can counteract this.
In pre-tensioned concrete, the prestressing is achieved by using steel or polymer tendons or bars that are subjected to a tensile force prior to casting, or for post-tensioned concrete, after casting.

No comments: